

Estimation of Groundwater Storage Changes in Transboundary Cambodia-Mekong River Delta Aquifer using GRACE Satellite

Surabhi Upadhyay¹; Sangam Shrestha¹; Ho Huu Loc¹; Santosh Dhungana¹; Lim Sokneth²

¹ Asian Institute of Technology, Thailand

² ALLEZ Engineering and Technology, Cambodia

OUTLINE

- Introduction
- Study Area
- Data Used
- Methodology
- Results and Discussion
- Conclusion

INTRODUCTION

- Groundwater a fundamental component of the global hydrological cycle
- Vital freshwater source agriculture, industry, public supply, and ecosystems increasingly reliant on groundwater
- In **Lower Mekong Basin**, groundwater supplies water to approximately **60 million** people (MRC, 2010).

Stressors on groundwater in the **Cambodia-Mekong River Delta aquifer -** climate change and excessive abstraction (Lee et al., 2018) leading to land subsidence, water shortage, and saltwater intrusion (Chen et al., 2016).

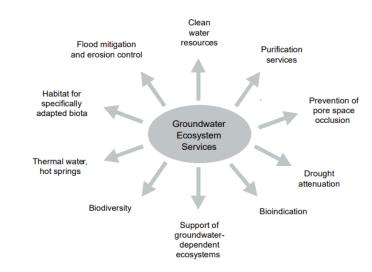


Fig: Importance of groundwater ecosystems (Avramov et al., 2010)

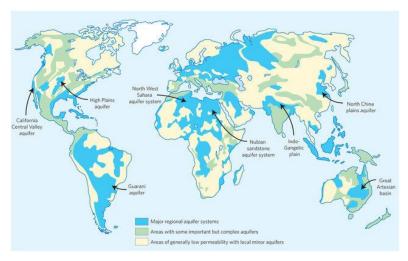


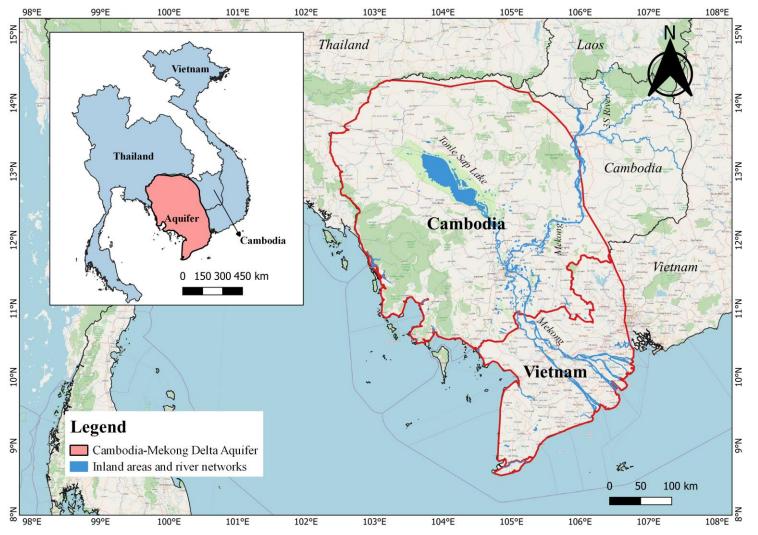
Fig: Major aquifers of the world (Lee et al., 2018)

INTRODUCTION

- Water security in **Vietnam** proper understanding of the regional groundwater flow regimes - especially associated with the recharge within the **Cambodian territory**.
- Increase in **population** and **economic development** stressed Figure 4: Rice fields in Mekong Delta, near Can Tho, **shared aquifer resources** – in near future – might result in conflicts.

Objective

To **evaluate** the viability of remote sensing data to accurately estimate **changes in groundwater storage (GWS)** and **assess** the spatio-temporal trend in GWS change

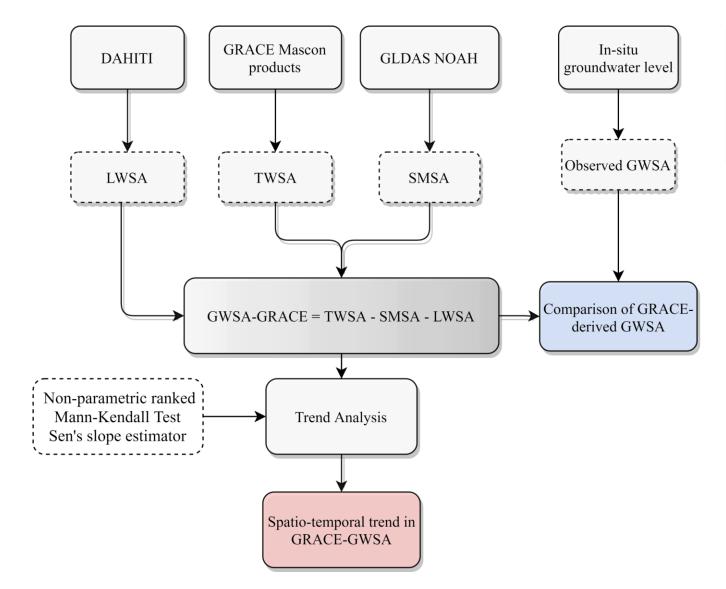


Vietnam Source: Circle of Blue

Figure: Increased groundwater use in Cambodia

Source: The Phnom Penh Post

STUDY AREA: Cambodia-Mekong River Delta Aquifer


Study area map: The Cambodia-Mekong River Delta aquifer

- **Area:** 180,000 square kilometers
- Aquifer type and deposits:
 Alluvial type with complex
 unconsolidated to semi consolidated alluvial sediments
- Shared countries: Cambodia
 (80%) and Vietnam (20%)
- Climate: Tropical dry
 - Wet season: May to October
 - **Dry season:** November to April
- Major water bodies: Tonle Sap lake in Cambodia and Mekong River in Vietnam

DATA USED

Components	Data Description	Spatial and Temporal Resolution	Time span	Units	Sources	
Satellite Remote Sensing						
	GRACE mascon solutions					
Terrestrial Water Storage	a. CSR-M	0.5°× 0.5°,	2002-2017	cm	<u>CSR-M</u>	
Anomaly (TWSA)	b. JPL-M	Monthly	2002-2017	cm	<u>JPL-M</u>	
	c. GSFC-M				<u>GSFC-M</u>	
Lake Water Level and Area	Tonle Sap Lake	Monthly	2002-2017	m	<u>DAHITI</u>	
Land Surface Model						
Soil Moisture Storage,	GLDAS v.2.1 (NOAH)	0.25°× 0.25°,	2002-2017	cm	<u>GLDAS</u>	
Evapotranspiration		Monthly				
Ground-based observation	s					
Groundwater Level	Cambodia				NexView Project	
	Kampong Speu	Monthly	2014-2017	m		
	Prey Veng		2006-2008		Nexview i roject	
	Siem Reap		2006-2008			
	Vietnam		2002-2015	m	Division for Water Resources	
	Mekong Delta	Monthly			Planning and Investigation	
					for the South of Vietnam (DWRPIS)	

METHODOLOGY: Overall framework

GRACE: Gravity Recovery and Climate Experiment GLDAS: Global Land Data Assimilation System

DAHITI: Database for Hydrological Time Series of Inland Waters

TWSA- Terrestrial Water Storage (TWS) Anomaly

SMSA - Soil Moisture Storage (SMS) Anomaly

LWSA - Lake Water Storage Anomaly GWSA - Groundwater Storage Anomaly

METHODOLOGY: Satellites overview

GRACE

Satellite mission - launched to measure the time-varying component of Earth's gravity field and **track the mass change** in the hydrosphere, cryosphere, and oceans with high accuracy at **30-day intervals**. Integrate water storage changes from the **land surface** to the **deepest aquifers**.

GLDAS

Integrates satellite-and ground-based monitoring data and aims to produce optimal land surface and flux variables. Gives an independent estimation of soil moisture, canopy water storage, and snow water equivalent.

DAHITI

Database for hydrological time series of inland waters estimates the water level time-series for lakes from multi-mission satellite altimetry and surface area using optical imagery like Landsat and Sentinel-2.

- Cambodia old and young alluvium deposits
- **Old deposits** thick pile of coarser textured sediments
- **Young alluvium** finer grained -silts and clays

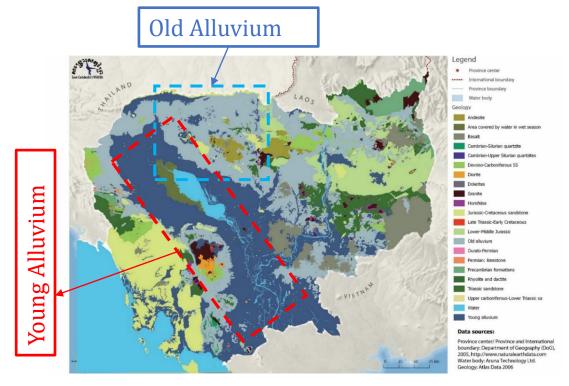


Fig: Geology of Cambodia

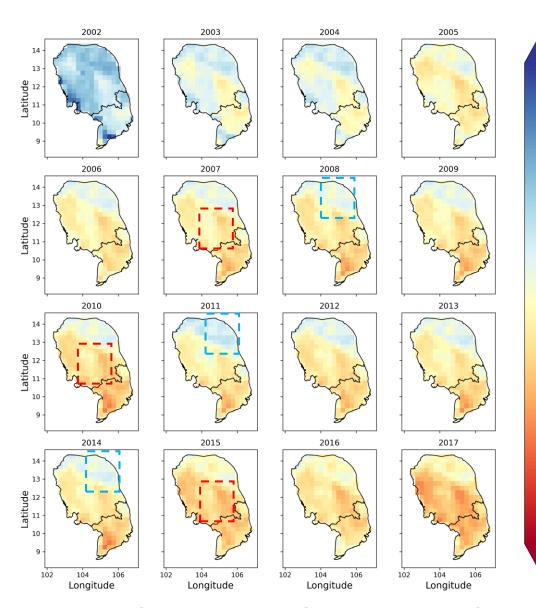


Fig: Yearly variation in groundwater storage anomalies

- **Eight alluvium aquifers** in Mekong Delta Vietnam (Vuong et al., 2016).
- Holocene aquifer poor water quality less yield and high susceptibility to pollution.
- Aquitard and aquicludes limit recharge to deeper aquifers (Pleistocene and Miocene) (Vuong et al., 2016).

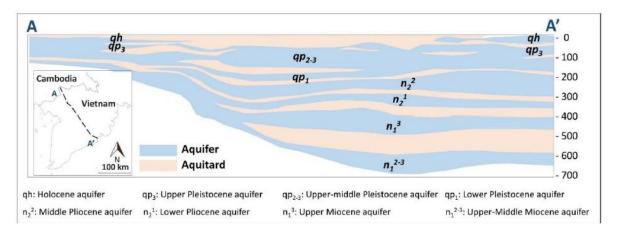


Fig: Hydrogeology of Mekong Delta, Vietnam

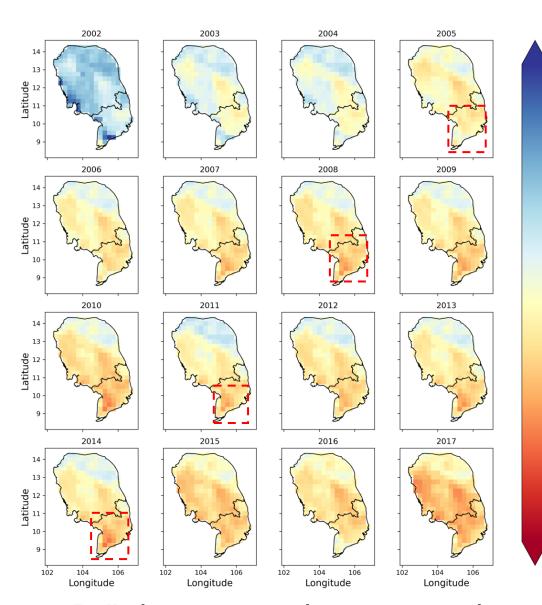


Fig: Yearly variation in groundwater storage anomalies

Satellite-based Groundwater Storage Anomaly - GSFC (cm)

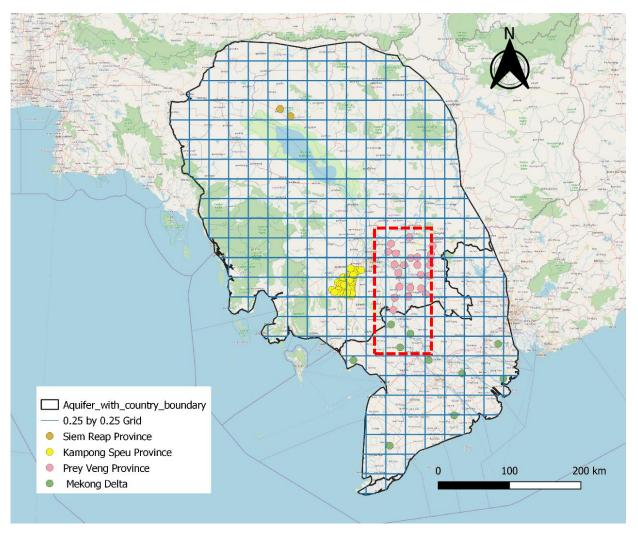


Fig: Location of monitoring wells

Comparison between GRACE-satellite and observed data in grid scale

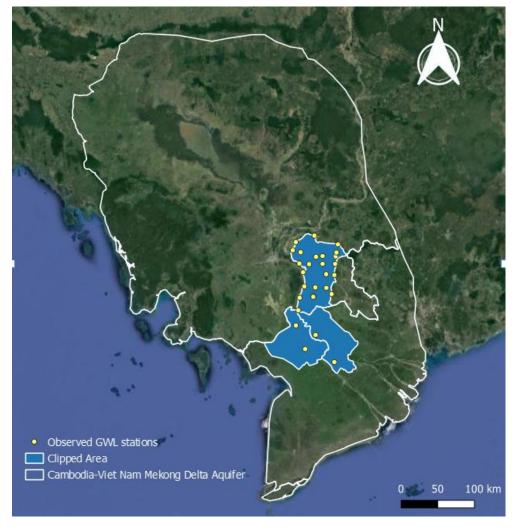


Fig: Grid to grid comparison

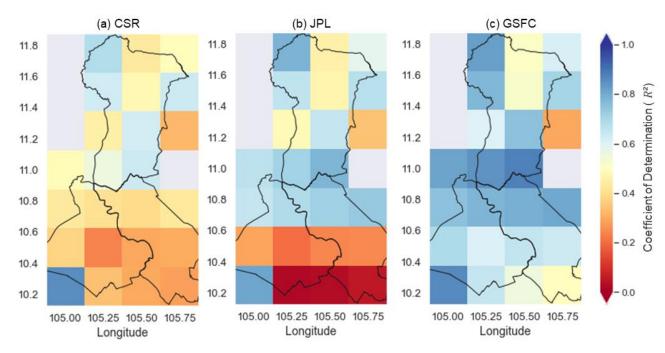
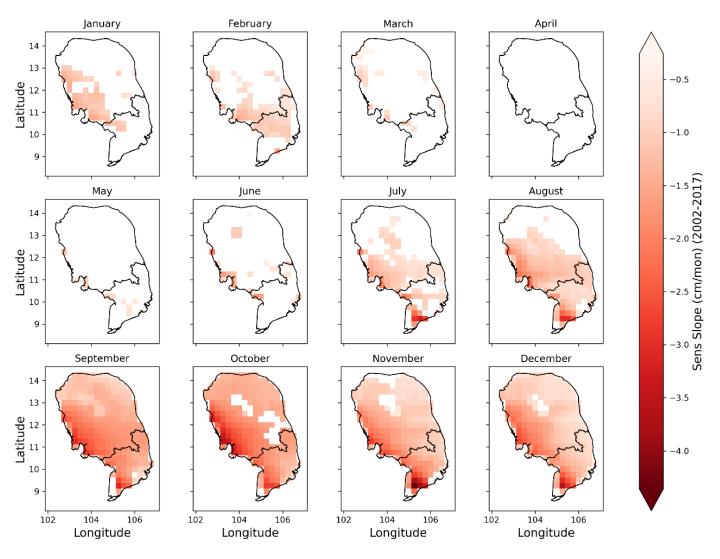


Fig: Correlation between GRACE-GWSA and observed-GWSA for (a) CSR, (b) JPL, and (c) GSFC satellite


GWSA= groundwater storage anomaly r = Pearson correlation coefficient R^2 = Coefficient of determination, RMSE = Root mean square error MAE = Mean absolute error

Components	GRACE satellites	r	R^2	RMSE (cm)	MAE (cm)
	CSR	0.78	0.61	11.97	10.55
GWSA (2006-2008)	JPL	0.81	0.66	10.76	9.32
	GSFC	0.91	0.82	10.10	8.90

Reasons for discrepancies

- GRACE GWSA is available in grid-cell and cannot capture **local signals** (Tangdamrongsub & Šprlák, 2021)
- Ground-based observations captures the change in groundwater level in a certain aquifer, GRACE captures for all aquifers (Guo et al., 2022).
- Specific yield and specific storage in this study were derived from past literature (Rateb et al., 2020)

Month	Significan t trend	Z-value	Rate of Depletio n (cm/yr)	Total loss (km³)
Jan		-1.48	-0.35	-10.85
Feb		-0.30	-0.13	-4.05
March		-1.39	-0.31	-9.57
April		-0.59	-0.11	-3.36
May		-0.10	-0.03	-0.93
June		-1.67	-0.19	-5.76
July		-1.09	-0.30	-9.14
Aug		-1.48	-0.60	-18.40
Sept	*	-2.97	-1.05	-31.98
Oct	*	-2.67	-1.17	-35.86
Nov	*	-2.57	-0.87	-26.47
Dec	*	-2.67	-0.84	-25.72
Wet season	*	-2.93	-0.85	-26.09
Dry season	*	-2.21	-0.54	-16.53
Annual	*	-2.84	-0.68	-18.28

Sen's slope GRACE-GWSA (cm/year) (p<0.05)

^{*}Note: Red highlights show declining groundwater storage anomaly at a confidence interval of 95% trends in the study area

- Rapid rise in the use of groundwater for irrigating rice in both
 Cambodia and Mekong Delta declining groundwater storage
 anomalies
 - 20% of groundwater is used for irrigation in the Mekong Delta and some parts of Cambodia.
- on groundwater level, **continuous pumping** through groundwater are responsible for negative trend (Chatterjee et al. 2020, Bera et al. 2021).
- Control mechanisms in terms of groundwater abstraction through some effective laws and policies needed in reducing depletion rate (Thomas & Famiglietti, 2019).

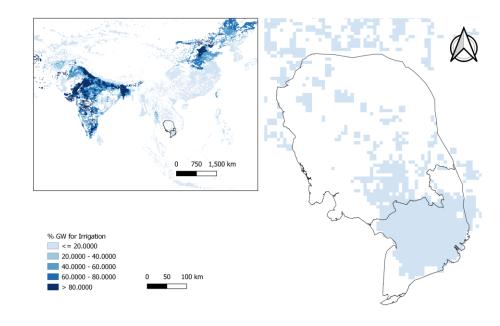


Fig: Percent of groundwater used for irrigation (extracted from FAO AQUASTAT)

RESULTS and DISCUSSION: Transboundary aquifer management

- Negative trend in GWSA –effective techniques for science-based transboundary aquifer management required
- In **Vietnam Mekong Delta**, groundwater resources monitoring, availability, and usage are limited, no proper legal framework is identified, very less involvement of local stakeholders in formulating and implementing policies, and governance was found to be centralized (Hamer et al., 2020)
- In **Cambodia**, proposed groundwater management strategies by (UNDP, 2020), strengthening institutional framework and law enforcement, capacity building of human resources in groundwater, groundwater inventory, enhancing coordination mechanisms and cooperation strategies, **but not yet implemented**
- Two countries have **differences** in terms of laws and policies, levels of understanding of the groundwater system, complex hydrogeology, type of aquifers present, sectoral usage of groundwater, management priorities, etc.

CONCLUSION

- Two major components determining terrestrial water storage anomaly: **soil moisture storage anomaly** and **groundwater storage anomaly**.
- Correlation coefficient between GWSA obtained from GRACE and PCR-GLOBWB greater than 0.7 with observed GWSA greater than 0.8.
- Long-term change in GWS showed a **declining trend** of **0.68 cm/year** and if it persists in the upcoming years, might have consequences for the domestic and agricultural sectors in the aquifer.
- **Potential** of **GRACE and GLDAS** in capturing the groundwater storage change in **data-scarce** regions.
- Basis for future research and in preparing policy briefs and groundwater management strategies
 for sustainable management of the transboundary aquifer

ACKNOWLEDGEMENT

Supported by 'Ecosystem-based Adaptations for Sustainable Groundwater Resources Management in the Transboundary Cambodia-Viet Nam Mekong Delta Aquifer, Lower Mekong Region (GEBA)' project

funded by **Sustainable Mekong Research Network (SUMERNET) 4 All** programme under **Stockholm Environment Institute (SEI)**

