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SUMMARY OF THE PRESENTATION

 Economics of groundwater management. Coastal aquifer as a renewable resource

 Sustainable yield is incomplete as a management strategy

 Optimal extraction is sustainable, but not the other way around

 Groundwater management with environmental concerns
 Downstream dependent ecosystem (via SGD)
 Upstream watershed management (via recharge or uptake)

 Other possible extensions



CROSS-SECTION OF COASTAL AQUIFER

Roumasset and Wada (2012)



MANAGEMENT STRATEGY

 Safe yield --- equal to recharge

 Sustainable yield – equal to net recharge (incl. discharge)

 Sustainable groundwater management accounting for hydrological, 
environmental and socioeconomic consequences of pumping, while incorporating 
stakeholder participation and adaptive governance (Elshall et.al., 2020)

 What is the approach path that maximizes the contribution of an aquifer to the 
general welfare? 



ECONOMICS OF GROUNDWATER
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THE PEARL HABOR AQUIFER,  HAWAII



DEPENDENT ECOSYSTEM (DOWNSTREAM)

Pongkijvorasin et.al. (2010)



TAKING INTO ACCOUNT “LIMU”

limu stock
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INVASIVE REMOVAL

Pongkijvorasin et.al. (2018)



TO REMOVE OR NOT?

 Damage costs of the invasive depend on growth rate of water demand. So the decision to 
remove it or not also depends on the growth rate of water demand as well. 



WATERSHED PROTECTION

Pongkijvorasin et.al. (2020)



OPTIMAL FENCE SIZE 
(1.8% GROWTH CONSTRAINT)

Per-unit cost
($/ft/50-yr)

First-year installation size
(acres)

NPV over 50 years
(million $)

25 3,135 281.62

50 2,984 280.51

75 2,869 279.42

100 2,761 278.37

125 2,661 277.34

150 2,567 276.33

288 2,100 271.19

≥289 0 271.21

Benchmark no fence 0 271.21



FENCING PARTIALLY OFFSETS LOSS FROM
ECOSYSTEM PROTECTION



OPTIMAL EXTRACTION



OTHER EXAMPLES

 Impacts of climate change on groundwater aquifer --- e.g. , decline in recharge

 Multi-instrument management of watershed conservation

 Multi-aquifer management

 Thai’s context
 Land-subside
 Salinity
 Recharge improvement (seepage from canal or irrigation system)



THANK YOU
Comments and suggestions are welcome.

Sittidaj.p@chula.ac.th
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